With support from the University of Richmond

History News Network puts current events into historical perspective. Subscribe to our newsletter for new perspectives on the ways history continues to resonate in the present. Explore our archive of thousands of original op-eds and curated stories from around the web. Join us to learn more about the past, now.

The Strange Cold War History of the Soviet Engines in the Antares Rocket

When an Antares rocket went up in a huge fireball last week at the Wallops Flight Facility in Virginia, observers looking to quickly assign blame for the crash pointed their fingers in a surprising direction: Russia. The culprits, they speculated, were the Russian-made NK-33  engines used to power the rockets. Decades old and relics of the Cold War, these obscure machines turned into a political tool. With relations between Moscow and the West at their lowest point since the Cold War's end, of course the Russian bogeyman could be spotted lurking in the shadows of this Virginia disaster. 

But where did these engines come from? And how did they end up on an American rocket that is one of the main competitors to Paypal co-founder Elon Musk's dreams of commercial space dominance? 

The answer lies in the obscure history of another failed rocket. In the depths of the Cold War, the Soviet Union suddenly and unexpectedly found itself losing the space race. After beating the Americans off the starting block by putting the first satellite in space and first achieving manned space flight, the United States was racing toward the moon. The Russians, it turned out, were missing the huge moon rocket necessary to sling men and materiel more than 200,000 miles from the earth. 

Not that they didn't try. The Soviet answer to America's Saturn rocket was dubbed the N-1 and represented a massive experiment in rocket science. Lacking huge rocket engines and the manufacturing capability to build them, the Soviets constructed a gargantuan rocket whose first stage was powered by 30 smaller rocket engines.

That engine was dubbed the NK-33 and represented a marvel of rocket science. Liquid-fueled rockets function by mixing a hydrocarbon -- typically kerosene -- with oxygen that then ignites in a combustion chamber. By raising the pressure in the combustion chamber, it is possible to generate even more thrust from that violent reaction. To do so, a pre-burner is used to pump the fuel at higher speeds. The Soviet innovation was to "close" this cycle and funnel the exhausts from the pre-burner into the combustion chamber. Previously, those exhausts had been vented to the engine's side, wasting energy and possible power...

Read entire article at Foreign Policy